SCC Configuration Guide # SCC – Portable, Low-Cost Signal Conditioning - Ideal for portable measurement systems - Wide variety of direct signal and sensor connectivity options - Wide range of analog and digital conditioning options - Measurement type selectable on a per-channel basis - Front-end signal conditioning for M Series, E Series, and some B Series multifunction DAQ devices # **Configure Your SCC System in Six Steps** #### Step 1 - Select Your SCC Modules (Table 1) Analog input, analog output, and digital I/O modules have dedicated slots. You can select up to eight noncascaded modules for analog input and eight modules for digital I/O. You can install feedthrough modules in any slot, but they are especially useful for accessing counter/timers on your M Series, E Series, or B Series multifunction DAQ device. #### Step 2 - Choose an SCC Carrier (Table 2) SCC carriers are available either with a hinged lid or with configurable connectors using panelettes. Hinged lids provide quick access to the modules. Configurable connectors provide custom signal-interface options. #### Step 3 – Select Your Panelettes (Table 3) If you have chosen an SCC carrier with configurable connectors, you can also select connector and interface panelettes. Different carriers offer different numbers of panelette slots. Also, some panelettes occupy more than one slot. #### Step 4 – Determine Your Power Option (Table 4) You can power an SCC system using a +5 VDC, 120/240 VAC, or 7 to 42 VDC external power source. To indicate the power option for your SCC system, select 01, 02, or 03 as the last two digits of the part number of the SC-2345 or SC-2350 carrier. Please note that if you choose power option 01, it is possible to power your SCC system using the internal power source of your DAQ device. For DAQCard and DAQPad devices, the total power required by your SCC modules must be less than 800 mW (490 mW of analog power). For PCI or PXI and M Series or E Series multifunction DAQ devices, the total power required by your SCC modules must be less than 4.55 W (1.74 W for analog modules). Additional power modules are sold separately. To determine the power requirements of the modules in your SCC DAQ system, use the online SCC Advisor at ni.com/advisors. #### Step 5 - Select Your DAQ Device and Cable (Table 5) Select the DAQ device to control your system. #### Step 6 - Select Your Accessories Choose from rack/panel-mount kits and stacking kits. You can also select additional power kits separately if your application requires multiple power configurations. # **SCC Configuration Guide** #### **SCC Modules** | | | | Millivolts/Volts | Current (0 to 20 m/ | Frequency-to-Volta | Thermocouples | | Strain Gages | Force, Load, Torqu | Accelerometer | NOS | | | | | | | | | |--------------|------------------------|-----------------------|------------------|---------------------|--------------------|---------------|--------|--------------|--------------------|---------------|----------|------------------------------------|---------------|--------------------------|---------------|-----------|--------------------|----------------------|------| | | Module | Number of
Channels | Millivo | Curren | Freque | Therm | RTD | Strain | Force, | Accele | TTL/CM0S | Description | Gain | Signal
Range | Filtering | Isolation | Excitation Sources | Excitation
Values | Page | | | SCC-AI0x | 2 ISO | 1 | - | _ | - | - | - | - | - | - | Isolation amplifier | 0.2
to 200 | ±50 mV
to ±42 V | 10 kHz | / | - | _ | 9 | | | SCC-Al1x | 2 ISO | 1 | - | - | - | - | - | - | - | - | Isolation amplifier | 1.2 | ±10 V, ±5 V | 4 Hz | 1 | - | - | 9 | | | SCC-A10 | 2 DI | / | - | - | - | - | - | - | - | - | Attenuator | 0.1 | ±60 V | - | / | - | - | 11 | | | SCC-LP01 | 2 DI | 1 | - | - | - | - | - | - | - | - | Lowpass filter | 0.5 | ±10 V | 25 Hz | - | - | - | 12 | | | SCC-LP02 | 2 DI | 1 | - | _ | - | - | - | - | - | - | Lowpass filter | 0.5 | ±10 V | 50 Hz | - | _ | - | 12 | | | SCC-LP03 | 2 DI | 1 | - | - | - | - | - | - | - | - | Lowpass filter | 0.5 | ±10 V | 150 Hz | - | - | - | 12 | | | SCC-LP04 | 2 DI | 1 | - | - | - | - | - | - | - | - | Lowpass filter | 0.5 | ±10 V | 1 kHz | - | _ | - | 12 | | Ħ | SCC-FV01 | 2 RSE | 1 | - | 1 | - | - | - | - | - | - | Frequency-to-voltage | 1 | 0 to 100 Hz | - | - | - | - | 13 | | Analog Input | SCC-TC01 | 1 DI | 1 | - | _ | 1 | - | - | - | - | - | Thermocouple input | 100 | ±100 mV | 2 Hz | - | _ | - | 4 | | aloc | SCC-TC02 | 1 DI | 1 | - | - | 1 | - | - | - | - | - | Thermocouple input | 100 | ±100 mV | 2 Hz | - | - | - | 4 | | Ë | SCC-RTD01 | 2 DI | 1 | - | - | - | 1 | - | - | - | - | RTD input | 25 | ±400 mV | 30 Hz | - | 1 current | 1 mA | 5 | | | SCC-SG01 | 2 DI | 1 | - | - | - | - | 1 | 1 | - | - | Strain (1/4-bridge, 120 Ω) | 100 | ±100 mV | 1.6 kHz | - | 1 voltage | 2.5 V | 6 | | | SCC-SG02 | 2 DI | 1 | - | _ | - | - | 1 | 1 | - | - | Strain (1/4-bridge, 350 Ω) | 100 | ±100 mV | 1.6 kHz | - | 1 voltage | 2.5 V | 6 | | | SCC-SG03 | 2 DI | 1 | - | - | - | - | 1 | 1 | - | - | Strain (1/2-bridge) | 100 | ±100 mV | 1.6 kHz | - | 1 voltage | 2.5 V | 6 | | | SCC-SG04 | 2 DI | 1 | - | _ | - | - | 1 | 1 | - | - | Strain (full-bridge) | 100 | ±100 mV | 1.6 kHz | - | 1 voltage | 2.5 V | 6 | | | SCC-SG11 | 2 DI | - | - | - | - | - | 1 | 1 | - | - | Strain shunt calibration | - | - | - | - | - | - | 6 | | | SCC-SG24 | 2 DI | 1 | - | _ | - | - | - | 1 | - | - | Full bridge input (350 Ω) | 100 | ±100 mV | 1.6 kHz | - | 1 voltage | 10 V | 6 | | | SCC-ACC01 | 1 DI | 1 | - | - | - | - | - | - | 1 | - | IEPE accelerometer input | 2 | ±5 V | 19 kHz | - | 1 current | 4 mA | 8 | | | SCC-CI20 | 2 DI | - | 1 | - | - | - | - | - | - | - | Current input | - | 0 to 20 mA | - | - | - | - | 13 | | Output | SCC-A010 | 1 ISO | 1 | - | - | - | - | - | - | - | - | Isolated voltage output | - | ±10 V | - | 1 | - | - | 10 | | ĕ | SCC-CO20 | 1 ISO | - | 1 | - | - | - | - | - | - | - | Isolated current output | - | 0 to 20 mA | - | / | _ | - | 14 | | | SCC-DI01 | 1 ISO | - | - | - | - | - | - | - | - | 1 | Isolated digital input | - | ±24 VDC | - | / | - | - | 14 | | ~ | SCC-D001 | 1 ISO | - | - | - | - | - | - | - | - | 1 | Isolated digital output | - | 30 VDC | - | / | - | - | 15 | | DIO/CTR | SCC-RLY01 ¹ | 1 | 1 | 1 | - | - | - | - | - | - | - | SPDT Relay | - | 5 A at 30 VDC
250 VAC | - | - | - | - | 15 | | | SCC-CTR01 | 1 ISO | - | - | - | - | - | - | - | - | 1 | Isolated counter/timer | - | 0 to 48 VDC | - | ✓ | - | - | 7 | | | SCC-FT01 | 2 SE/1 DI | - | - | - | - | - | - | - | - | - | Feedthrough | - | - | - | - | - | - | 16 | | 1The s | witching capabilit | ty of SCC-RLY01 | is not ! | 5 A at | 250 V/ | AC thro | oughou | t – it i | s 5 A a | at 250 | VAC or | nly if it is used with SCC-68, and | d it is 5 A a | t 30 VAC if used v | with SC-2345. | | | | | Table 1. SCC Module Selection Guide #### SC-2345 and SC-2350 Carriers | Description | Number of Panelette Slots | |--|---------------------------| | SCC carrier with a hinged lid | = | | SCC carrier with configurable connectors (side 68-pin interface) | 18 | | SCC carrier with configurable connectors (rear 68-pin interface) | 15 | Table 2. SCC Carriers #### **Panelettes** | Panelette | Description | Connectors/Units
per Panelette | Slot Width | |-----------------------|--|-----------------------------------|------------| | Minithermocouple jack | J or K-type
or uncompensated | 2 2 | 1
1 | | Thermocouple jack | J or K-type
or uncompensated | 1
1 | 1
1 | | BNC | BNC connector | 2 | 1 | | SMB | SMB connector | 4 | 1 | | Banana jack | Banana jack | 2 | 1 | | LEMO (B Series) | 2-pin female | 2 | 1 | | | 4, 6-pin female | 1 | 1 | | MIL-C-26482 | 2, 4, or 6-pin female | 1 | 1 | | 9-pin D-Sub | Single (male – female)
Dual (male – female) | 1
2 | 2 3 | | Momentary switch | On – off | 2 | 1 | | Toggle switch | On - off - on | 2 | 1 | | Rocker switch | On - off - on | 1 | 1 | | LED | A red, green, yellow,
and orange LED | 4 | 1 | | Potentiometer | 1 turn, 10 kΩ | 1 | 1 | | Strain relief | Small | 1 | - | | Blank | Filler panel | _ | _ | Table 3. Panelettes #### **Power Options** | Power Type | Power Supplied By | Power Option | |------------------|---|--------------| | +5 VDC | DAQCard/DAQPad (800 mW maximum)
PCI/PXI (4.55 W maximum) | -01 | | 120 VAC, 240 VAC | External ¹ | -02 | | 7 to 42 VDC | External ² | -03 | Table 4. SC-2345/SC-2350 Power Options #### **Recommended DAQ Devices** | Product | Multifunction I/O Features | Bus | Cabling To | |--------------------------|----------------------------|-----------|-------------| | M Series | Multifunction I/O | PCI, PXI | SHC68-68-EP | | DAQCard-6036E | 16-bit, 200 kHz | PCMCIA | SHC68-68-EP | | DAQPad-6020E | 12-bit, 100 kHz | USB | SH68-68-EP | | DAQPad-6070E | 12-bit, 1 MHz | IEEE 1394 | SH68-68-EP | | 68-pin PCI/PXI E Series | Multifunction I/O | PCI, PXI | SH68-68-EP | | 100-pin PCI/PXI E Series | Multifunction I/O | PCI, PXI | SH1006868 | | B Series | Multifunction I/O | PCI | SH68-68-EP | Table 5. National Instruments DAQ Devices ## **SCC** Advisor For more assistance in configuring your SCC system, visit the SCC Advisor at ni.com/advisors. # Portable, Modular Signal Conditioning Modules # **NI SCC-TC Series Thermocouple Input** | Model | Channel | Description | Part Number | |----------|---------|-------------------------------|-------------| | SCC-TC01 | 1 | Thermocouple, spade connector | 777459-03 | | SCC-TC02 | 1 | Thermocouple, screw terminals | 777459-04 | The National Instruments SCC-TC01 and SCC-TC02 are single-input modules for conditioning signals from a variety of thermocouple types, including J, K, T, B, E, N, R, and S, and millivolt inputs with a range of ±100 mV. The NI SCC-TC modules include a 2 Hz lowpass filter, an instrumentation amplifier with a gain of 100, and buffered outputs for maximum scanning rates by the multifunction DAQ device. The input circuitry of the SCC-TC modules also includes high-impedance bias resistors for open-thermocouple detection as well as handling both floating and ground-referenced thermocouples. The SCC-TC modules include an onboard thermistor for cold-junction compensation. Two versions of the SCC-TC are available. The SCC-TC01 includes a 2-prong uncompensated thermocouple jack that accepts any miniature or subminiature 2-prong male thermocouple plug. The SCC-TC02 includes a removable screw-terminal plug that features an additional connection for grounding thermocouple shields. # **Specifications** #### **SCC-TC Series** Typical for 25 °C unless otherwise noted. #### **Input Characteristics** | Number of channels | 1 differential | |-------------------------------------|---| | Input signals | Thermocouples of type J, K, T, B, | | | E, N, R, and S, ±100 mV | | Input signal gain | 100 | | Maximum input working voltage | ±12 V of chassis ground | | Overvoltage protection | v or or accord ground | | to DAQ device | ±42 V _{pk} (powered on or off) | | Nonlinearity | ±0.004% maximum | | Gain error | ±0.08% of reading, maximum | | Input impedance | ±0.00 /0 of rodding, maximum | | Normal powered on | 10 MΩ | | Powered off or overload | 10 kΩ | | Open thermocouple detection current | 250 nA maximum | | · | 110 dB minimum | | Common-mode rejection ratio | | | Bandwidth | 2 Hz, dual-pole RC filter | | Offset error | $5 \mu V_{rms}$, referred to input | | Stability | | | Offset temperature coefficient | ±0.6 μV/°C maximum | | Gain temperature coefficient | ±0.0005%/°C | | Cold-junction sensor (thermistor) | | | Output | 1.91 V (at 0 °C) to 0.58 V | | | (at 55 °C) | | Accuracy (15 to 35 °C) | ±0.4 °C maximum | | Power Requirements | | | Ληαίου | 60 mW/ | # **NI SCC-RTD01 RTD Input** | Model | Channel | Description | Part Number | |-----------|---------|------------------------|-------------| | SCC-RTD01 | 2 | 2, 3, or 4-wire Pt RTD | 777459-18 | The National Instruments SCC-RTD01 is a dual-channel module that accepts 2, 3, or 4-wire platinum RTDs. Each channel of the NI SCC-RTD01 has an amplifier with a gain of 25 and a 30 Hz lowpass filter. In addition, the module has a 1 mA excitation source for powering the RTDs. # **Specifications** # SCC-RTD01 | Ana | log I | Input | | |-----|-------|-------|--| | | | | | | Analog Input | | |--------------------------------------|--| | Number of input channels | 2 differential
±400 mVDC (fixed gain of 25
on each channel) | | Maximum working voltage | | | (signal + common mode) | Each input should remain within ±12 V of ground | | Overvoltage protection | ±42 V _{pk} /25 VDC (powered on or off) | | Input impedance | $2~\text{M}\Omega$ in parallel with 4.7 nF powered on; $20~\text{k}\Omega$ min powered off | | Filter type | Lowpass 3-pole Butterworth filter | | -3 dB cutoff frequency | 30 Hz | | System noise | 4.5 μV _{rms} (referred to input) | | Transfer Characteristics | | | Gain | 25 | | Gain error | ±1.2% | | Gain-error temperature coefficient | ±10 ppm/°C | | Offset error | ±250 μV RTI | | Offset-error temperature coefficient | ±1.6 μV/°C | | Nonlinearity | 10 ppm of full scale | | Recommended warm-up time | 5 minutes (SCC system only) | | Amplifier Characteristics | | | CMRR | 110 dB at 60 Hz | | Output range | ±10 V | | Excitation | | | Number of channels | 1 | | Constant-current source | 1 mA | | Maximum voltage level without | | | losing regulation | 24 V | | Drift | ±127 ppm/°C | | Environment | | | Operating temperature | 0 to 50 °C | | Relative humidity | 5 to 90% noncondensing | | Power Requirements | | | Analog | 135 mW maximum | Digital 153 mW maximum # NI SCC-SG Series Strain Gage Input/Excitation | Model | Channel | Description | Part Number | |----------|---------|--|-------------| | SCC-SG01 | 2 | 120 Ω , quarter-bridge strain gages | 777459-13 | | SCC-SG02 | 2 | 350 Ω, quarter-bridge strain gages | 777459-14 | | SCC-SG03 | 2 | Half-bridge strain gages | 777459-15 | | SCC-SG04 | 2 | Full-bridge strain gages | 777459-16 | | SCC-SG11 | 2 | Shunt calibration | 777459-17 | | SCC-SG24 | 2 | Full-bridge strain gages, load cells, pressure sensors, torque sensors | 777459-37 | The National Instruments SCC-SG Series consists of dual-channel strain gage modules for conditioning quarter, half, and full-bridge strain gages and a calibration module. Each module is designed for a specific type of bridge configuration. Each channel of an NI SCC-SG module (except SCC-SG11) includes an instrumentation amplifier, a 1.6 kHz lowpass filter, and a potentiometer for bridge-offset nulling. Each SCC-SG0x module also includes a single 2.5 V excitation source. The SCC-SG24 has a 10 V excitation source for load cells and pressure sensors. The SCC-SG11 is a dual-channel shunt calibration module for use with the SCC-SG0x and SCC-SG24 modules. Each channel includes two terminals for wiring a switched 301 k Ω , 1 percent, 1/4 W resistor across any two points of your bridge. You enable shunt calibration for both channels of a module by writing a logic high to the digital line controlling the SCC-SG11. You disable shunt calibration by writing a logic low to the same digital line. When you install an SCC-SG module in the SC-2345, the carrier routes the strain gage signals to two input channels of the multifunction DAQ device, channels x and x+8, where x is 0 through 7. # **Specifications** #### SCC-SG0x #### **Input Characteristics** | 2 differential | |----------------| | ±100 mV | | ±10 V | | 100 | | | | Overvoltage protection Input impedance Gain error Offset error Bandwidth Excitation voltage | ± 28 V _p (powered on or off) 10 MΩ powered on, 10 kΩ powered off or overload $\pm 0.8\%$ of reading maximum ± 5 μV 1.6 kHz (single-pole RC filter) 2.5 V $\pm 0.4\%$ | |---|---| | Excitation Current Drive | | | SG01, SG02
SG03, SG04
Excitation drift | 42 mA (with 2 120 Ω gages) 60 mA (with 2 350 Ω gages) 13 mV/°C | | Power Requirements | | | Analog | 143 mW
210 mW | | SCC-SG11 | | | Number of channels Control signal Resistor for each channel Resistor temperature coefficient | 2
1 DIO channel
301 k Ω ±1%, socketed
±100 ppm/°C | | Power Requirements | | | Digital | 25 μW | | SCC-SG24 | | | Input Characteristics | | | Number of channels | 2 differential | | Input signal range Output signal range | ±100 mV
±10 V | | Gain | 100 | | Overvoltage protection | ±42 VDC powered on and | | Input impedance | powered off 20 M Ω powered on >60 k Ω powered off or overload | | Gain error | ±0.20% of reading max | | Offset error | ±50 μV typ, 325 μV max before | | Bandwidth | calibration ¹ 1.6 kHz single-pole buffered RC filter | | Excitation voltage | 10 V ±0.05% | | Excitation current drive | 60 mA, based on two full-bridge 350 Ω strain gages | | Excitation drift | 10 ppm/°C | Power Requirements Analog 340 mW Digital 930 mW ¹By factory default, the nulling resistors are not installed in the SCC-SG24. See the user manual for information on installing the nulling resistors. # **NI SCC-CTR01 Counter/Timer Isolation** | Model | Channel | Description | Part Number | |-----------|---------|----------------------------------|-------------| | SCC-CTR01 | 1 | 0 to 48 V isolated counter/timer | 779474-01 | The National Instruments SCC-CTR01 is an isolated general-purpose counter/timer module for the SCC platform. This module performs in a wide variety of counter/timer tasks, including quadrature encoder measurement, edge counting, frequency measurement, pulse-width-modulation (PWM) generation, and pulse-train generation. With optical isolation, the test system and UUT are protected from transient voltage spikes when the signals are connected to the SCC-CTR01. The SCC-CTR01 also features short-circuit protection that disables the outputs if current limits are reached. # **Specifications** #### SCC-CTR01 | Number of inputs | 2 (CTR_SRC, CTR_GATE) | |-------------------------|-----------------------| | Number of outputs | 1 (CTR_OUT) | | Voltage range | 0 to 48 VDC | | Isolation voltage | 60 VDC | | Maximum input frequency | 400 kHz | | Minimum pulse width | 1 μs | # **NI SCC-ACC01 Accelerometer Input** | Model | Channel | Description | Part Number | |-----------|---------|---------------------|-------------| | SCC-ACC01 | 1 | Accelerometer input | 777459-19 | The National Instruments SCC-ACC01 is a single-channel module that accepts Integrated Electronic Piezoelectric (IEPE) compatible sensors such as accelerometers and microphones. The NI SCC-ACC01 has an amplifier with a gain of two, a 0.8 Hz highpass filter, and a 19 kHz 3-pole Bessel lowpass filter. The maximum input range is ±5 V. In addition, this module has a 4 mA current source to power an accelerometer or microphone. When you install the SCC-ACC01 into the SC-2345, the carrier routes the single output voltage to one input channel of the multifunction DAQ device, channel x, where x is 0 through 7. For example, if installed into the J1 socket of the SC-2345, the output voltage is routed to input channel 0 of the DAQ device. # **Specifications** #### SCC-ACC01 | Analog Input Number of input channels | 1 differential
±5 VAC (fixed gain of 2)
AC
0.8 Hz
Lowpass 3-pole Bessel
19 kHz
±0.3 dB, 10 Hz to 5 kHz
±1 dB, 5 Hz to 10 kHz | |--|---| | Maximum working voltage (signal + common mode) | Each input should remain within ±12 V of ground | | Overvoltage protection | ±40 VAC + DC (powered on or off) | | Input impedance | 5 M Ω in series with 0.39 μ F (powered on or off) | | System noise | 130 μV_{rms} (referred to input) | | Transfer Characteristics | | | Gain | 2
±1%
±10 ppm/°C
±3 mV (referred to input)
±1.6 µV/°C
10 ppm of full scale
5 minutes | | Amplifier Characteristics | | | CMRR
Output range | 80 dB at 60 Hz
±10 V | | Excitation | | | Number of channels Constant-current source Maximum voltage level | 1
4 mA | | without losing regulation
Drift | 24 V
±127 ppm/°C | | Environment | | | Operating temperature | 0 to 50 °C
5 to 90% noncondensing | | Power Requirements | | | Analog | 89 mW | # **NI SCC-AI Series Isolated Analog Input** | Model | Channel | Input Range | Bandwidth | Part Number | |----------|---------|-------------|-----------|-------------| | SCC-AI01 | 2 | ±42 V | 10 kHz | 777459-20 | | SCC-AI02 | 2 | ±20 V | 10 kHz | 777459-21 | | SCC-AI03 | 2 | ±10 V | 10 kHz | 777459-22 | | SCC-AI04 | 2 | ±5 V | 10 kHz | 777459-23 | | SCC-AI05 | 2 | ±1 V | 10 kHz | 777459-24 | | SCC-AI06 | 2 | ±100 mV | 10 kHz | 777459-25 | | SCC-AI07 | 2 | ±50 mV | 10 kHz | 777459-26 | | SCC-Al13 | 2 | ±10 V | 4 Hz | 777459-27 | | SCC-Al14 | 2 | ±5 V | 4 Hz | 777459-28 | National Instruments SCC-Al Series modules are dual-channel bankisolated analog input modules for reading input voltages from ± 50 mV to ± 42 V. Each channel of an NI SCC-Al module includes an instrumentation amplifier, a lowpass filter, and a potentiometer for calibration. These modules are installation rated for CAT I, and provide safety working isolation of 60 VDC per module. # **Specifications** #### **SCC-Al Series** #### **Input Characteristics** #### **Safety Isolation** | Working common-mode voltage | 60 VDC, CAT I ¹ | |-----------------------------|----------------------------| | Gain error | Adjustable to 0 | | Offset error | Adjustable to 0 | #### **Power Requirements** | Analog | 410 mW | |---------|--------| | Digital | 610 mW | ¹Test isolation voltage is 2,350 VAC for 2 s. | Module | Input Range | Output Range | Gain | Filter Bandwidth | |----------|-------------|--------------|------|------------------| | SCC-AI01 | ±42 V | ±8.4 V | 0.2 | 10 kHz | | SCC-AI02 | ±20 V | ±10 V | 0.5 | 10 kHz | | SCC-AI03 | ±10 V | ±10 V | 1 | 10 kHz | | SCC-AI04 | ±5 V | ±10 V | 2 | 10 kHz | | SCC-AI05 | ±1 V | ±10 V | 10 | 10 kHz | | SCC-AI06 | ±100 mV | ±10 V | 100 | 10 kHz | | SCC-AI07 | ±50 mV | ±10 V | 200 | 10 kHz | | SCC-Al13 | ±10 V | ±10 V | 1 | 4 Hz | | SCC-Al14 | ±5 V | ±10 V | 2 | 4 Hz | # **NI SCC-A010 Isolated Analog Output** | The National Instruments SCC-AO10 is a single-channel isolated analog | |--| | voltage output module with an output range of ± 10 V. Each channel of | | the NI SCC-A010 is referenced to its own isolated ground, allowing up to | | 60 VDC of common-mode voltage between grounds (channel-to-channel | | or channel-to-chassis). In addition, the SCC-AO10 increases the output | | current drive capacity of an M Series, E Series, or B Series multifunction | Description ±10 V isolated voltage output DAQ device to ±30 mA. Because the modules are isolated, you can cascade two SCC-AO10 modules for an output range of ±20 V. There is a maximum of two SCC-A010 modules per carrier. Note: Use the SCC-A010 with only multifunction DAQ devices that have analog outputs. # **Specifications** #### **SCC-A010** #### **Output Characteristics** | Number of output channels | 1 nonreferenced single ended | |---------------------------|--| | Input range | ±10 V | | Output range | ±10 V | | Current drive | ±30 mA | | Gain nonlinearity | 0.5% of full-scale output range | | Propagation delay | 10 μs | | Output noise | 2.5 mV _{rms} typ; 4 mV _{rms} max | | Bandwidth | >23 kHz | | Slew rate | 1 V/μs | #### **Safety Isolation** Part Number Channel-to-earth (signal + common mode) 60 VDC, CAT I #### **Environment** | Operating temperature | 0 to 50 °C | |------------------------------|-------------------------| | Relative humidity | 10 to 90% noncondensing | | Stability | | | Output offset temperature | | | coefficient | 300 μV/°C | | Gain temperature coefficient | 300 ppm/°C | #### **Power Requirements** | Analog | 180 mW | |---------|--------| | Digital | 1.15 W | # **NI SCC-A10 Voltage Attenuator** | Model | Channel | Description | Part Number | |---------|---------|------------------|-------------| | SCC-A10 | 2 | Attenuator input | 777459-06 | The National Instruments SCC-A10 is a dual-channel module that accepts input voltage sources up to 60 VDC. Each channel of the NI SCC-A10 includes a 10:1 attenuation circuit and differential instrumentation amplifier with low-impedance outputs for maximum scanning rates by the multifunction DAQ device. The attenuation circuit includes high-impedance bias resistors, so you can connect floating or ground-referenced inputs to the SCC-A10 without adding external bias resistors. The SCC-A10 also provides overvoltage protection (up to $250 \, V_{rms}$) for your DAQ system. When you install an SCC-A10 module in the SC-2345, the carrier routes the attenuated input signals to two input channels of the DAQ device, channels x and x+8, where x is 0 through 7. # **Specifications** #### SCC-A10 #### **Input Characteristics** | Number of channels | ±60 VDC
±6 VDC
±0.14% of reading, maximum
±6.5 mV maximum (referred | |--|--| | Input impedance Normal powered on or offFull power bandwidth | | | Power Requirements Analog | 90 m\// | | Allaloy | JUIIIVV | # **NI SCC-LP Series Lowpass Filters** | Model | Channel | Description | Part Number | |----------|---------|-------------------------|-------------| | SCC-LP01 | 2 | Lowpass filter (25 Hz) | 777459-07 | | SCC-LP02 | 2 | Lowpass filter (50 Hz) | 777459-08 | | SCC-LP03 | 2 | Lowpass filter (150 Hz) | 777459-09 | | SCC-LP04 | 2 | Lowpass filter (1 kHz) | 777459-10 | The National Instruments SCC-LP Series consists of dual-channel lowpass filter modules that accept two ± 10 V signals. Each channel has a 4th-order Butterworth filter. The cutoff frequency is specific to the module and applies to both channels of the module. # **Specifications** #### **SCC-LP Series** #### **Amplifier Characteristics** | Number of input channels | 2 differential
±10 V
±5 V | |---|--| | Gain | 0.5 | | Overvoltage protection | ±40 V | | Input impedance | 10 G Ω in parallel with 10 pF powered on 10 k Ω powered off or overload | | Gain error | Adjustable to 0% | | Offset error (RTI) | 350 μV typical, 1.5 mV maximum | | Filter Characteristics | | | Filter type Stop-band attenuation rate Cutoff frequency | 4th-order Butterworth
80 dB/decade
SCC-LP01 = 25 Hz
SCC-LP02 = 50 Hz
SCC-LP03 = 150 Hz
SCC-LP04 = 1 kHz | #### **Passband Ripple** F_c = cutoff frequency | Passband | Typical | Maximum | |-----------------------|-----------------------------|-------------------| | DC to ½F _c | $0 \pm 0.04 \text{ dB max}$ | 0 ± 0.1 dB max | | DC to ½F _c | 0 ± 0.06 dB max | 0 ± 0.2 dB max | | DC to %F _c | -0.2 ± 0.25 dB max | -0.2 ± 0.4 dB max | | DC to F _c | -3 ± 0.3 dB max | -3 ± 0.5 dB max | #### System Noise | System Moise | | |-----------------------------------|------------------------------| | THD at F _c | <-90 dB | | Wide band noise | | | (DC to 1 MHz, referred to input) | $100 \mu V_{rms}$ | | Narrow band noise | | | (DC to 33 kHz, referred to input) | 6 μV _{rms} | | Stability | | | Gain temperature coefficient | 10 ppm/°C typical, 20 ppm/°C | | | maximum | | Offset drift (RTI) | 3.4 μV/°C typical, 27 μV/°C | | | maximum | | Power Requirements | | #### Power Requirements | SCC-LP01, LP02 | | |----------------|--------| | Analog | 135 mW | | SCC-LP03, LP04 | | | Analog | 475 mW | ## **NI SCC-FV01 Frequency Input Module** | Model | Channel | Description | Part Number | |----------|---------|---|-------------| | SCC-FV01 | 2 | Frequency-to-voltage conversion (0 to 100 Hz) | 777459-32 | The National Instruments SCC-FV01 is a dual-channel frequency-to-voltage conversion module that accepts ± 10 V signals up to 100 Hz. The output scales linearly with the input frequency, and goes to 0 V with a DC input signal. Each channel triggers on the incoming signal using a threshold of 0 V and a hysteresis of 200 mV. For isolated solutions, consider using the SCC-Al03 cascaded with the NI SCC-FV01. # **Specifications** #### SCC-FV01 #### **Input Characteristics** | input onuractoriotico | | |--------------------------------------|---| | Number of input channels Input range | 2 referenced single ended 200 mV ¹ to 10 V | | Input coupling | DC | | Minimum input frequency | 0 Hz | | Minimum input pulse width | | | (5 V pulse train) | 1.5 μs | | Overvoltage protection | ±40 VAC + DC (powered on or off) | | Input impedance | | | Signal > threshold | 400 kΩ | | Signal < threshold | 10 M Ω | | Threshold | Zero crossing | | Hysteresis | 200 mV | | Transfer Characteristics | | #### **Transfer Characteristics** | Rise/fall time Step response Output offset | 80 ms (0 to +63%)
220 ms at 90%; 360 ms at 99%
5 mV max | |--|---| | Output offset temperature coefficient | 10 ppm/°C | | Gain error temperature coefficient | 100 ppm/°C | | Nonlinearity | 0.015% full scale | | Output ripple | 30 mV _{pp} at 10 Hz | | Output range | 0 to +10 V | | Recommended warm-up time | 5 minutes | #### **Power Requirements** # **NI SCC-CI20 Current Input** | Model | Channel | Description | Part Number | |----------|---------|--------------------------|-------------| | SCC-CI20 | 2 | 0 to 20 mA current input | 777459-05 | The National Instruments SCC-Cl20 is a dual-channel module that accepts two 0 to 20 mA or 4 to 20 mA current loop inputs. Each independent channel of the NI SCC-Cl20 includes a precision 249 Ω current conversion resistor that converts a 0 to 20 mA signal into a 0 to 5 V signal. Each channel includes a differential instrumentation amplifier with low-impedance outputs for maximum scanning rates by the multifunction DAQ device, and bias resistors for handling both floating and ground-referenced current sources. The SCC-Cl20 also includes two spare 249 Ω resistors. When you install the SCC-Cl20 in the SC-2345, the carrier routes the two output voltages to two input channels of the DAQ device, channels x and x+8, where x is 0 through 7. For example, if you install the module in the J1 socket of the SC-2345, the output voltages are routed to input channels 0 and 8 of the DAQ device. # **Specifications** #### SCC-CI20 #### **Input Characteristics** | Number of channels | 2 differential | |----------------------|--------------------------| | Input range | 0 to 20 mA | | Output range | 0 to 5 V | | Gain error | ±0.1% of reading maximum | | Offset error | ±0.6 mV maximum | | Input resistor | 249 Ω, 0.05%, 0.25 W | | Full power bandwidth | 10 kHz | | | | #### **Power Requirements** Analog 100 mW # **NI SCC-CO20 Isolated Current Output** | Model | Channel | Description | Part Number | |----------|---------|-------------------------|-------------| | SCC-C020 | 1 | Isolated current output | 777459-33 | The National Instruments SCC-CO20 is a single-channel isolated current output module that can provide up to 20 mA. This module is installation rated for CAT I, and provides a safe working voltage of 60 VDC. Because the modules are isolated, you can connect two NI SCC-CO20 modules in parallel to provide up to 40 mA. The SCC-CO20 plugs into either analog output socket, J17 or J18. The voltage applied to the module from an analog output channel of a multifunction DAQ device sets the current output. Because there are two output channels on DAQ devices, there are a maximum of two SCC-CO20 modules per carrier. **Note:** Use the SCC-CO20 with only multifunction DAQ devices that have analog outputs. # **Specifications** #### **SCC-C020** #### **Output Characteristics** | Number of channels | 1 | |--------------------|--------------------------| | Output referencing | Nonreferenced (floating) | | Input range | 0 to 10 V | | Output range | 0 to 20 mA | | Voltage compliance | 12.5 V | | | | ### Safety Isolation Working common-mode voltage....... 60 VDC, CAT I #### **Environment** #### **Power Requirements** # **NI SCC-DI01 Optically Isolated Digital Input** | Model | Channel | Description | Part Number | |----------|---------|------------------------|-------------| | SCC-DI01 | 1 | Isolated digital input | 777459-11 | The National Instruments SCC-DI01 is a single-channel, optically isolated digital input module for sensing digital signals up to 30 VDC, including TTL. This digital input module can sense both AC and DC signals and has a status LED for visual verification of the module input status. The NI SCC-DI01 fits in any SC-2345 socket J9 through J16. When you install an SCC-DI01 in one of these sockets, the digital signal is automatically routed to a DI0 line of the multifunction DAQ device. For example, socket J9 connects to digital line 0 of the data acquisition device. Because you can configure multifunction DAQ devices for input or output on a line-by-line basis, you can have between one and eight SCC-DI01 modules per carrier. # **Specifications** #### SCC-DI01 #### **Input Characteristics** | Number of channels | 1 | |--------------------|------------------| | Input range | 30 VDC or 30 VAC | Digital...... 61 mW | Digital Logic Levels | | |----------------------|-----------------------------| | Input current | | | 5 V input | 1.5 mA | | 24 V input | 7.0 mA | | Isolation | 42 VDC from computer ground | | Power Requirements | | ## **SCC-D001 Optically Isolated Digital Output** | Model | Channel | Description | Part Number | |----------|---------|-------------------------|-------------| | SCC-D001 | 1 | Isolated digital output | 777459-12 | The National Instruments SCC-D001 is a single-channel, optically isolated digital output module for switching external devices. The NI SCC-D001 optical isolation circuitry handles up to 24 VDC and includes a status LED for visual verification of the module output status. The SCC-D001 includes an external switch with which you can configure the power-up state of the module either high or low. The SCC-D001 plugs into any SC-2345 socket between J9 and J16. When you install the module in one of these sockets, the digital signal is controlled by a DIO line of the multifunction DAQ device. For example, socket J9 connects to digital line 0 of the DAQ device. Because you can configure DAQ devices for input or output on a line-by-line basis, you can have from one to eight SCC-D001 modules per carrier. ## **Specifications** #### **SCC-D001** #### **Output Characteristics** | Number of channels | 1 | |----------------------|----------------| | Compatibility | TTL-compatible | | Supply voltage range | 5 to 24 VDC | #### **Digital Logic Levels** Configuration 1 | Logic Level | Output Voltage Level
between V _{out} and V _{com} | |-----------------------------------|---| | Low $(I_{01} = 0 \text{ mA})$ | 0 V | | High ($I_{01} = 25 \text{ mA}$) | 22 VDC at $V_{ss} = 24 \text{ V}$
3 VDC at $V_{ss} = 5 \text{ V}$ | #### Configuration 2 | Logic Level | Output Voltage Level
between V _{out} and V _{com} | |----------------------------------|---| | Low $(I_{02} = 25 \text{ mA})$ | 0.4 V | | High ($I_{02} = 0 \text{ mA}$) | V_{ss} | | Maximum continuous load current (I _o) | | |---|--------------| | Configuration 1 | 86 mA | | Configuration 2 | 120 m | | Minimum load resistance (at $V_{ss} = 24 \text{ V}$ |) | | RLOAD1 | 196 Ω | | RLOAD2 | 184 Ω | | | | #### **Power Requirements** | Digital U3 iii | Digital | | 69 m\ | |----------------|---------|--|-------| |----------------|---------|--|-------| # NI SCC-RLY01 SPDT Relay | Model | Channel | Description | Part Number | |-----------|---------|-------------|-------------| | SCC-RIY01 | 1 | SPDT relay | 777459-34 | The National Instruments SCC-RLY01 is a single-channel relay module for switching external devices. It contains one single-pole, double-throw (SPDT) relay capable of switching 5 A at 30 VDC or 250 VAC when used with the SCC-68 and 5 A at 30 VDC or 30 VAC when used with the SC-2345. The NI SCC-RLY01 uses positive logic. A digital high sets the relay, and a digital low resets it. The SCC-RLY01 plugs into any SC-2345 socket between J9 and J16. When inserting an SCC-RLY01, a DIO line of the multifunction DAQ device controls the digital signal. For example, socket J9 connects to digital line 0 of the data acquisition device. Because you can configure the DAQ devices for input or output on a line-by-line basis, you can have from one to eight SCC-RLY01 modules per carrier. ## **Specifications** #### SCC-RLY01 | Number of channels | 1 | |----------------------------|---------------------------------------| | Nominal switching capacity | 5 A at 250 VAC1, 5 A at 30 VDC | | Contact resistance | $30~\text{m}\Omega$ | | Switching time | | | Operate time (NC to NO) | 5 ms (10 ms max) | | Release time (NO to NC) | 4 ms (5 ms max) | | Maximum speed | 30 operations/s at rated load | | Contact lifetime | 5 x 10 ⁷ operations at 180 | | | operations/minute (minimum) | | | | ¹The nominal switching voltage is 250 VAC when using a high-voltage backshell in an NI SCC-68 carrier. Otherwise the module is rated for only 30 VAC. # **NI SCC-FT01 Feedthrough** | Model | Channel | Description | Part Number | |----------|-----------|-------------|-------------| | SCC-FT01 | 2 SE/1 DI | Feedthrough | 777459-01 | The National Instruments SCC-FT01 is a feedthrough module that offers direct connection to analog input, analog output, digital I/O, and GPCTR channels of the DAQ device. For analog input channels, you can connect to either two single-ended or one differential channel. The NI SCC-FT01 includes a breadboard area for development of custom signal conditioning circuitry. If you install the SCC-FT01 in an analog input socket (J1 through J8, SC-2345 or SC-2350) or analog output socket (J17 or J18, SC-2345 only) then you have direct connection to the corresponding channels of the DAQ device. You can add custom conditioning to the SCC-FT01 for these analog inputs or outputs. In any socket, the SCC-FT01 module has access to 5 and $\pm 15\ \text{VDC}$ power. If you use the breadboard area for custom conditioning, you can cascade the SCC-FT01 with other SCC modules for dual-stage conditioning. # **Specifications** #### **SCC-PWR Series** | - | - | • | - | - | - | | |---|---|---|---|---|---|----| | | | | | | | በ1 | | | | | | | | | | Input | +5 VDC ±5% from an external source, or +5 VDC from | |---|---| | | DAQ device | | Output | +5 VDC, 100% efficiency,
±15 VDC, 62% efficiency | | SCC-PWR02 | | | Input | 90 to 264 VAC, 1 A maximum | | Output | +5 VDC, 1 A, ±15 VDC, ±0.3 A | | SCC-PWR03 | | | Input | 7 to 42 VDC | | Output | +5 VDC, 75% efficiency,
±15 VDC, 46% efficiency | | Physical | | | Dimensions | | | SCC modules | 8.9 by 2.9 by 1.9 cm
(3.5 by 1.2 by 0.7 in.) | | SC-2345 connector block | 24.1 by 26.2 by 3.94 cm | | 00 20 10 00111100101 210011111111111111 | (9.5 by 10.3 by 1.6 in.) | | SC-2345 with configurable | | | connectors | 30.7 by 25.4 by 4.3 cm | | External AC adapter | (12.1 by 10 by 1.7 in.) | | (for SCC-PWR02) | 15.5 by 8.5 by 4.8 cm | | | (6.1 by 3.3 by 1.9 in.) | | Connectors | 00 : 1 000111 | | SC-2345 cableSCC input | 68-pin male SCSI II Removable screw terminal or | | 300 mput | minithermocouple connector | | SCC output | 20-pin right-angle male | | | connector | | Certification and Compliance | | | SCC-Alxx | 300 V, CAT II working voltage | | SCC-A010 | 300 V, CAT II working voltage | | European Compliance | | | EMC | EN 61326 Group I Class A, 10 m, | | | Table 1 Immunity | | Safety | EN 61010-1 | | North American Compliance | | | EMC | FCC Part 15 Class A using CISPR | | Australia and New Zealand Com | pliance | | EMC | AS/NZS 2064.1/2 (CISPR-11) | | For more information about certific | eations | For more information about certifications, visit ni.com/certification. # **NI Services and Support** NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services. ## **Training and Certification** NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training. #### **Professional Services** Our NI Professional Services team is composed of NI applications and systems engineers and a worldwide National Instruments Alliance Partner program of more than 600 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance. # **OEM Support** We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem. # **Local Sales and Technical Support** In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support. We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp. #### **Hardware Services** #### **NI Factory Installation Services** NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor. #### **Calibration Services** NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration. #### **Repair and Extended Warranty** NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services. ni.com • 800 813 3693 National Instruments • info@ni.com